目次

AD Converter の利用	
設定	
NuttX Configuration	
ファームウェアの書き込み	
動作テスト	2
値の(電圧への)変換	3
値の(温度への)変換	4
プログラミング	5

AD Converter の利用

XG-50 の AD Converter には、外部電源(バッテリ[[ch1]]ワイド電源[ch2]) を接続しています。 加えて[]SoC 内部の Vref[]温度センサーも有効化しています。

Channel	入力	Note
0	VREFINT	SoC 内部基準電圧源
1	バッテリー電圧	アッテネータ経由 ¹⁾
2	ワイド電源電圧 ²⁾	アッテネータ経由 ³⁾
17	温度センサー	SoC 内蔵温度センサー

設定

NuttX Configuration

AD Converter を有効化するため、make menuconfig で NuttX の構成を変更します。

- Device Drivers → Analog Device(ADC/DAC) Support 有効化
- Device Drivers → Analog Device(ADC/DAC) Support → Analog-to-Digital Conversion 有効化

- Application Configuration → Examples → ADC example 有効化
 - ADC device path → "/dev/adc0"
 - $\,\circ\,$ Number of Samples per Group $\rightarrow 4$

◦ Use software trigger 有効化

😣 📾 💿 kikuchi@develop: ~/src/NuttX_XG50/nuttx		
ファイル(F) 編集(E) 表示(V) 検索(S) 端末(T) ヘルプ(H)		
	^	
Examples Arrow keys navigate the menu. <enter> selects submenus> (or empty submenus). Highlighted letters are hotkeys. Pressing <y> includes, <n> excludes, <m> modularizes features. Press <esc><esc> to exit, <? > for Help, for Search. Legend: [*] built-in [] excluded <m> module < > module capable</m></esc></esc></m></n></y></enter>		
<pre>[*] /DC example (/dev/adc0) /DC device path (NEW) (4) N mber of Samples per Group (NEW) (*) Use software trigger [] PTC alarm driver example [] PA102 LED Strip example [] Verify C++ cctype operations [] AT modem chat utility [] Config Data example / unit test [] PU hog [] DHCP server example [] Generic file system test [] FTP client example [] Generic file system test [] TTP client example [] TTP server example [] TTP server example [] TTP server example [] SH DD keyboard example [] ISON HDD keyboard example [] INA219 example [] INA219 example [] SON example</pre>		
	Ŧ	

config を保存し、build します。

ファームウェアの書き込み

ファームウェアの書き込みと動作を参考に、ファームウェアを XG-50 に書き込みます。

動作テスト

書き込んだファームウェアを実行すると、下のようにadcというコマンドが使用できるようになります。

NuttShell (N nsh> help help usage:	SH) help [-v] [<cmd>]</cmd>				
[dirname	false	mkfatfs	pwd	time	
?	date	free	mkfifo	reboot	true	
basename	dd	help	mkrd	rm	uname	
break	df	hexdump	mh	rmdir	umount	
cat	dmesg	kill	mount	set	unset	
cd	echo	ls	mv	sh	usleep	

2023/07/21 12:49			3/6	AD Converter の利用	
cp cmp	exec exit	mb mkdir	mw ps	sleep test	xd
Builtin Ap adc < cu i2c sudoku nsh>	ps: 				

さっそく実行してみます。

nsh> adc adc_main: g_adcstate.count: 1 adc_main: Hardware initialized. Opening the ADC device: /dev/adc0 Sample: 1: channel: 0 value: 1498 2: channel: 1 value: 3483 3: channel: 2 value: 0 4: channel: 17 value: 936 nsh>

Channel 0, 1, 2, 17 の 4 つの値を取ることができました。

値の(電圧への)変換

上記 AD 変換で取得した値は、アナログ電源(VDDA) を基準にした相対値⁴⁾となっています。 STM32L4 の Reference Manual にあるとおり、実際の電圧を求めるには計算を行う必要があります。

計算式は下記のとおりです。

\$\$ V_{CHANNEL_X} = \frac{V_{DDA}}{FULL_SCALE} \times ADC_X_DATA \$\$

(Reference Manual より)

ここで[]VDDA は 3.3[V][]FULL_SCALE は 4095 なのでそれを当てはめて Channel 1 (バッテリー入力電 圧) を計算すると、

 $V_{CHANNEL1} = \frac{3.3}{4095} \times 3483 \times 1.1 = 3.087 [V]$

となります。

VREFINT を利用した計算

STM32L4 の VREFINT を利用し、VDDA の電圧に依存しない計算方法です。

 $V_{CHANNEL_X} = \frac{3.0 V \times VEFINT_CAL \times ADC_X_DATA}{VREFINT_DATA \times FULL SCALE}$

ここで、各変数は下記の通りです。

変数	内容
VREFINT_CAL	VREFINT calibration value ⁵⁾ ($0x1FFF75AA - 0x1FFF75AB$)
ADC_DATA	AD 変換結果
VREFINT_DATA	Channel 0 AD変換結果
FULL_SCALE	4095

手元のチップでは、**VREFINT_CAL**の値は 0x0678 でした。

nsh> mh 0x1fff75aa
 1fff75aa = 0x0678
nsh>

この値を上記式に当てはめて計算すると、

In [8]: ((3 * 0x0678 * 3483) / (1498 * 4095)) * 1.1
Out[8]: 3.1028589034463536

となります。

試しに電圧計で電源ピンのところで計測してみると 3.094 [V] でした。 どちらの方法を使用しても 0.3% 程度の誤差⁶⁾で計測できるようです。

値の(温度への)変換

CH17の温度センサーの値から温度への変換式は下記のとおりです。

 $Temperature (in \ ^C) = frac{110 \ ^C - 30 \ ^C}{TS_CAL2 - TS_CAL1} times (TS_DATA - TS_CAL1) + 30 \ ^C $$$

ここで、各変数は下記になります。

変数	内容
TS_CAL1	温度センサーキャリブレーション値 [™] @30℃ (0x1FFF75A8 - 0x1FFF75A9)
TS_CAL2	温度センサーキャリブレーション値 [®] @110℃ (0x1FFF75CA - 0x1FFF75CB)
TS_DATA	温度センサ[] ADC 出力値

TS_CAL1, **TS_CAL2** ともに VDDA が 3.0V のときの値となっていますが[]XG-50 の VDDA は 3.3V のため、

□VREFINT を利用した計算』を用いて換算する必要があります。

手元のチップで TS_CAL1, TS_CAL2 を確認してみると、

nsh> mh 0x1fff75a8
 1fff75a8 = 0x0410
nsh> mh 0x1fff75ca
 1fff75ca = 0x051b

それぞれ 0x0410, 0x051b となっているため、それを用いて計算すると、

In [18]: VREFINT_CAL=0x0678

- In [19]: TS_DATA=936
- In [20]: TS_CAL1=0x410
- In [21]: TS_CAL2=0x51b
- In [22]: VREFINT_DATA=1498

In [23]: ((110 - 30) / (TS_CAL2 - TS_CAL1)) * ((VREFINT_CAL * TS_DATA) /
VREFINT_DATA - TS_CAL1) + 30
Out[23]: 28.419065620577733

28.4 となりました。

プログラミング

apps/examples/adc/adc_main.cを参照してください。

1)

4)

5)

10/11 にしているため、真の値を求めるには 1.1 倍する必要があります

5[]36V

1/12 にしているため、真の値を求めるには 12倍 する必要があります

12bit ADC なので、0~4095

メーカーにて出荷時にキャリブレーションした結果を不揮発領域に書き込んであります

電圧計が正しいかどうかは置いておいて

⁷⁾,⁸⁾ VDDA 3.0V

From:

https://ma-tech.centurysys.jp/ - MA-X/MA-S/MA-E/IP-K Developers' WiKi

Permanent link: https://ma-tech.centurysys.jp/doku.php?id=xg_series_devel:use_adc:start

Last update: 2019/01/07 16:16